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In order to detect and graphically visualize the absence or presence of

systematic errors in fit data, conditional probabilities are employed to analyze

the statistical independence or dependence of fit residuals. This concept is

completely general and applicable to all scientific fields in which model

parameters are fitted to experimental data. The applications presented in this

work refer to published charge-density data.

1. Introduction

In two preceding publications, the theoretical R value (Henn

& Schönleber, 2013) and a meta residual factor Rmeta (Henn &

Meindl, 2014), which employs the theoretical R value, were

developed. The concept of a theoretical R value and a meta

residual factor is completely general and applicable to all

fields where least-squares fits are conducted.1 Application to

crystallographic standard structures and high-resolution

charge-density studies revealed that residual distributions

reminiscent of a Gaussian only rarely appear. The application

of the meta residual factor in Henn & Meindl (2014) focused

on the experimental standard uncertainties (s.u.’s) of the

crystallographic data, i.e. the s.u.’s of the reflection file were

used. These are known to be often not very accurate; therefore

an error model may be used, for example with the help of a

weighting scheme (see e.g. Waterman & Evans, 2010). This

should result in more appropriate values for the measurement

errors. We abbreviate the estimations for the measurement

errors derived from an error model with �̂� to indicate the

difference to statistical weights �. In the present study we

repeat this analysis with respect to �̂�. Furthermore, we present

a tool that we have developed for the visualization and

analysis of residual distributions: a Gaussian distribution of

residuals is a necessary requirement for the validity of a least-

squares fit, but it is not sufficient to prove that the refinement

is without systematic errors. To prove this, further tools are

needed, which are developed in the publication at hand.

2. Rmeta for weighted residuals

In this section the meta residual value is discussed for the

experimental data sets (1–23) that were introduced with

references in Henn & Meindl (2014) together with the artifi-

cial data sets (24–29) that correspond to refinements with (set

Nos. 25, 27, 29) and without (set Nos. 24, 26, 28) cutoff Io > 0

for increasingly noisy data. For more details about the artificial

data sets see Henn & Meindl (2014). A weighting scheme was

employed according to the corresponding cif files in data sets

1, 2, 8–13, 17–19 and 21–23. The other data sets used either

weights w ¼ 1=�2ðF2
oÞ or w ¼ 1=�2ðFoÞ corresponding to

�̂�ðF2
oÞ ¼ �ðF

2
oÞ and �̂�ðFoÞ ¼ �ðFoÞ, respectively.

A standard weighting scheme applied in charge-density

studies has the form �̂�ðF2
oÞ ¼ ½�

2ðF2
oÞ þ ðaPÞ

2
þ bP�1=2 with

�2ðF2
oÞ from the reflection file and the free parameters a and b

as well as P ¼ f F2
o þ ð1� f ÞF2

c , where the free parameter f

determines to what extent the error model refers to the

calculated intensities F2
c (Volkov et al., 2006).

Fig. 1 shows the difference in percentage points between

actual and predicted weighted (�̂�-based) R values (Fig. 1a) and

the corresponding values of Rmeta (Fig. 1b) in red. Addition-

ally, the corresponding �-based values are shown in gray and

are connected with a dashed line.

The absolute difference between actual and predicted

�̂�-based R values (Fig. 1a) is positive for all experimental data

sets, as was the case in the �-based analysis. This may be a hint

that the �̂� values are still too small or that systematic errors are

present. The artificial data sets Nos. 25, 27 and 29 with cutoff

Io > 0 show slightly negative values, indicating overfitting,

whereas those without cutoff virtually lead to meta residual

values of zero. The strongest absolute decrease in actual and

predicted R values is for data set 13, the anharmonic nuclear

motion multipole model refinement of the 298 K data set of

the explosive RDX. The relative change is distinct for the

whole series 8–13 of anharmonic and harmonic refinements at

different temperatures. These small absolute and large relative

changes have a strong impact on the meta residual value for

data sets 8–13 (Rmeta = 12.4, 9.9, 10.3, 13.1, 16.3 and 5.4%),

which are now closer to Rmeta = 8.7% from data set 2. Also

data sets 17–19, which are all from one publication, show a

distinct decrease in Rmeta from 91.4, 82.0 and 80.9% to 57.8,

16.3 and 16.0%, respectively. The Rmeta values are much lower

1 Actually, applicability is given in all cases where a Gaussian distribution of fit
residuals is expected. This applies also for example to certain maximum-
entropy methods. The concept of theoretical R values is furthermore easily
extended to cases in which another distribution is expected, provided the
distribution is known in advance.
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for the multipole models (sets 18 and 19), indicating a lower

degree of contamination with systematic errors as compared

to the IAM (independent-atom model) (set 17). The decrease

is more prominent for the multipole-model refinements than

for the IAM refinement. The same error model was used for

sets 17–19.

3. Statistical independence of residuals

After a successful model refinement without systematic errors,

the residuals are true random numbers; therefore they are

not systematically related to the calculated intensities (Ic), to

the standard uncertainties (s.u.’s), the resolution, or to the

diffractometer the data were acquired from. This innocuous

statement turns into a powerful tool when it is taken as

stimulation to search for systematic connections. If a

systematic relation can be established, this disproves the

residuals from being statistically independent. If no relation is

found this just proves that with the chosen method a relation

cannot be established. When no search for systematic relations

is conducted, there will probably be no systematic connections

detected. This is the state of affairs in current charge-density

studies. As was found earlier, even the easy-to-apply normal

probability plots – a minimum requirement for the evaluation

of the fit quality – are only rarely used (Henn & Meindl, 2014).

In the following paragraphs the connection(s) between resi-

duals � ¼ ðIo � IcÞ=�̂�ðIoÞ and observed intensities, calculated

intensities, reduced standard uncertainties �̂� and resolution

are examined with the help of conditional probabilities.

4. Conditional probabilities

The question to be answered is: are the residuals statistically

independent of the calculated intensities, the resolution and

s.u.’s? As mentioned above, statistical independence implies

that any (equally strong and sufficiently large) independent

subsets do not show a systematic relation. This is further

investigated in the following.

The conditional probability pBðAÞ of observing property A,

given the condition B with non-vanishing probability pðBÞ> 0,

is given by Bayes theorem:

pBðAÞ ¼
pAðBÞpðAÞ

pðBÞ
; ð1Þ

where the term in the enumerator represents the probability

of observing A and B simultaneously pðABÞ ¼ pAðBÞpðAÞ.

When the properties A and B are independent, the condi-

tional probability of observing property B, given that property

A has already been observed, is just the probability of

observing B

pAðBÞ ¼ pðBÞ; ð2Þ

and vice versa:

pBðAÞ ¼ pðAÞ: ð3Þ

In this case of independence, the probability that A and B are

observed simultaneously, pðABÞ ¼ pAðBÞpðAÞ factorizes in the

individual probabilities of observing A and of observing B.

This is then also equal to the probability of observing simul-

taneously B and A:

pðABÞ ¼ pðAÞpðBÞ ¼ pðBAÞ: ð4Þ

This last equation becomes particularly simple when A and B

are chosen from percentiles. For example, what is the prob-

ability of finding a residual from the last decile (which just

means a residual larger than 90% of all residuals), given the

s.u. is also from the largest decile of standard uncertainties?

The individual probabilities are in both cases 0.1 (as deciles

were chosen); therefore, if their combined probability is

significantly different from 0.01, it is concluded that they are

not statistically independent. If their combined probability is

close to 0.01, it cannot be concluded that they are statistically

independent, as this value may appear accidentally and it may

be different for other parts of the probability space, for

example when the fourth decile of residuals and the eighth

decile of s.u.’s were chosen. In order for A and B to be

statistically independent, they have to have a value close to

0.01 for any combination of deciles. Deviations from this value

are then pure statistical fluctuations.
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Figure 1
(a) Difference in percentage points between actual and predicted
weighted R values for �̂�-based R values (red) and s.u.-based R values
(gray). (b) Systematic error as given by Rmeta for �̂�-based R values (red)
and s.u.-based R values (gray).



In this case of statistical independence, large residuals do

not tend to stem from strong observations, but they appear

equally likely from strong and from weak reflections. The

reader who wants to object here that large residuals may only

appear for large values of the intensity is reminded that the

difference ðIo � IcÞ is scaled by the respective s.u.: � ¼
ðIo � IcÞ=s:u: Here, the term s.u. refers to what has been used

in the least-squares refinement, either �̂�ðIoÞ or �ðIoÞ. There-

fore, when the s.u.’s are accurate in relation to each other and

the model is fully adequate, the magnitude of the residuals will

not show any trend, they will be smoothly distributed over the

whole range of e.g. calculated intensities, s.u.’s, or the resolu-

tion.

These conditional probabilities can be visualized as a plot in

the unit square: every point in the unit square represents the

appearance of a certain combination of residual value and,

e.g., s.u. value. In the case of statistical independence, no

combination is preferred over the other and the density of

points for every sufficiently large area is approximately the

same for all areas. The density of points gives the conditional

probability. We call these plots Bayesian Conditional prob-

ability plots, in short BayCoN plots. The principle is explained

in the following paragraph for a BayCoN plot of residuals �
versus s.u.’s, in short notation BayCoNð�; s:u:Þ or just ð�; s:u:Þ.

In order to construct this plot, a list of Nref residuals and

corresponding s.u.’s was sorted in ascending order of s.u.’s.

Each s.u. value was then replaced by its ranking number,

starting with one for the smallest s.u. and ending with Nref for

the largest s.u. The list was then sorted in ascending order of

the residuals, and the actual residual values were replaced by

their ranking number. Both columns of integer positive

ranking numbers were divided by the number of reflections

Nref . In this way, Nref pairs of numbers, each between 0 and 1,

are obtained. This pair of numbers is interpreted as a pair of

coordinates and plotted in a unit square. From this construc-

tion it follows that the same number of points will be found in

each horizontal or vertical strip of the same width. For

example in a strip between 0.0 and 0.1, which corresponds to

the lowest decile, there will be Nref=10 points. If there is no

systematic interrelation between the residuals and the s.u.’s,

the plot will show the same density of points in each suffi-

ciently large chosen region. As a consequence of using ranking

numbers, the plots are invariant under transformations which

do not change the ranking number, for example a plot of

residuals versus s.u.’s, (�; s:u:), will – apart from possible

numerical issues – look exactly the same as a plot of residuals

versus variances ½�; ðs:u:Þ2�, or a plot (�; sin �=�) will look equal

to a plot ½�; ðsin �=�Þ2�.
A short note about the uniqueness of the results is appro-

priate: unambiguous results are obtained only in the case that

the numbers of each subset are all different, i.e. all values of �
are different from each other and all values of s.u.’s are

different from each other as only in this case a unique order is

established. The more identical numbers that are found in

each column, the higher the number of possible outcomes, and

each different result is equally valid. In this case of repeated

values the result is also dependent on the sequence of

ordering: a BayCoN plot ð�; s:u:Þ may then look fundamen-

tally different from a plot ðs:u:; �Þ, which is not desirable.

Problems of this kind may occur when the s.u. values in the

reflection file are given only to two digits and when the

reflection file is large. We regard these effects as a technical

and numerical problem, and not as a methodological problem,

as in crystallographic applications real random numbers

appear in the intensities and s.u.’s due to the quantum nature

of the beam. Therefore, if these numbers are given to a

sufficient accuracy it is almost certain that they are all

different.

Techniques based on ranking numbers have been known for

a long time. In the literature for instance it is described how

to generate a rank order correlation scatter diagram with

punched cards (Bradley, 1963). It is, however, also important

to note that the conditional probability approach as

proposed here has to be seen in a more general theoretical

framework.

4.1. Application to artificial data

The first application is on the artificial data set No. 24 in

order to test the hypothesis of uniform distributions in the

case of random residuals. The data correspond to a type 1

consistency data set with 1% noise in the intensities and

additional background noise, p1 ¼ 0:01, p2 ¼ 1:5 in s.u. =

p1 � Io þ p2 with Io ¼ F2
o [see equation (22) and text in Henn

& Meindl (2014)]. All reflections were used in the refinement.

Figs. 2(a), 2(b) and 2(d) depict the ð�; s:u:Þ, ð�; IcÞ and

ð�; sin �=�Þ plots; they appear to be uniform by visual

inspection, which is confirmed by a �2
S test, whereas plot

Fig. 2(c), ð�; IoÞ, obviously does not show a uniform distribu-

tion of points in the unit square.

To quantify the degree of uniformity of the distributions,

each of these was subjected to a �2 test against the hypothesis

of a uniform distribution. The respective data were each

collected into 100 bins and the points in each bin were

counted, yielding Ni points for the ith bin. As in the case of

statistical independence, the points are equally distributed, the

expectation value for the number of points in the ith bin is

ni ¼ Nref=100. For each data set the corresponding sum

�2
S ¼

X100

i¼1

ðNi � niÞ
2

ni

was calculated. The minimum requirement for good test

statistics is ni � 5 (Semendjajew et al., 2012). The threshold

value for rejecting the hypothesis that the points are uniformly

distributed at a 0.001 level of significance is approximately

149. The sums �2
S are 116.04 (a), 118.49 (b), 2705.82 (c) and

66.95 (d) (see the supporting information2 for a list of �2
S

values for data sets 1–29). The assumption of a uniform

distribution over the unit square at the given level of signifi-

cance is not rejected in the cases Fig. 2(a), 2(b) and 2(d), but it

must be rejected in the case of Fig. 2(c).
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The interpretation of Fig. 2(c) is as follows. The weakest

(decile of) observed intensities, which are negative and are

found in a horizontal stripe at the bottom of the plot, do

not contribute to the positive residuals that are found in a

vertical stripe in the right part of the figure. This is because

for negative observed intensities the residuals are necessarily

also negative. The second decile of intensities does contribute

to positive and negative residuals, but not to the whole

range of positive residuals. It is only after approximately the

fourth decile of intensities that the whole positive and nega-

tive range is covered. In the case of (only) random errors

and in the absence of a cutoff, the conditional probabilities

of finding, for example, a large residual, given that, for

example, the s.u. is large, are the same as finding a small

residual given a large s.u. This probability is equal to the

probability of finding a large residual given a small s.u. It is

also equal to the probability of finding a small residual given a

small s.u., that is to say, the distributions of the residuals and
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Figure 2
BayCoN plots for the artificial data set No. 24: residuals (a) versus standard uncertainties, (b) versus calculated intensities, (c) versus observed intensities
and (d) versus resolution.



the s.u.’s can be regarded as independent at the given level of

significance. If, in the last sentences, the symbol ‘s.u.’s’ is

replaced by the symbol ‘Ic’ or by ‘sin �=�’, everything still

holds, but if it was replaced by ‘Io’, this does not hold. Instead

of using the words ‘small’ and ‘large’, one could also substitute

the terms ‘the first (second, third) decile’ and ‘the eighth,

ninth, tenth decile’ or similar with median, tercile, quartiles,

quintiles and so forth.

In short, under ideal conditions of a refinement against

unbiased observed intensities uniform distributions are to be

expected for BayCoN plots of (�; s:u:), (�; Ic) and (�; sin �=�),

but not for (�; Io).

What happens when a cutoff is applied? It was published

long ago (Hirshfeld & Rabinovich, 1973), and has been

observed in experimental data recently (Henn & Meindl,

2014), that observation and significance cutoffs introduce bias
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Figure 3
BayCoN plots for the artificial data set No. 25 with cutoff Io > 0: residuals (a) versus standard uncertainties, (b) versus calculated intensities, (c) versus
observed intensities and (d) versus resolution.



and lead to distorted model parameter values. The artificial

data set No. 25 results from a refinement of an IAM against

exactly the same set of Io; �ðIoÞ, as in the case of data set

No. 24 but with application of an intensity cutoff Io > 0,

leading to a rejection of 1219 from originally 14 604 reflec-

tions. The corresponding BayCoN plots are shown in Fig. 3.

The ð�; s:u:Þ (�2
S ¼ 827:35, Fig. 3a) and ð�; IcÞ (�2

S ¼ 928:46,

Fig. 3b) distributions show features in the bottom left, whereas

the ð�; IoÞ plot (�2
S ¼ 955:16, Fig. 3c) shows the area of zero

point density in the bottom right. Only the distribution of

ð�; sin �=�Þ (�2
S ¼ 135:25, Fig. 3d) appears to be uniform.

Compared to Fig. 2(c), the area of zero point density in

Fig. 3(c) appears reduced. From the corresponding �2
S values

the assumption of a uniform distribution must be rejected in

the three cases (a), (b) and (c).

Fig. 3(a) shows that the conditional probability of finding an

s.u. value from the lowest decile given that the residual is from

the lowest decile (and vice versa) is zero. This follows from the

area of zero point density in the conditional probability space

spanned by the range between 0.0 and 0.1 of the x and y axes,

whereas the product of probabilities is 0:1� 0:1 ¼ 0:01

according to equation (4).

In analogy, Fig. 3(b) shows that the larger half of the Ic

contributes to all residuals whereas the smaller half of the Ic

contributes more to the positive residuals than to the negative

residuals due to the area of zero point density, where no

contributions are found. As the lowest possible Ic values are

zero and the negative observations were omitted, there are no

lower Io values for the lowest Ic values and consequently

negative residuals cannot appear for those. Conversely, the

positive residuals are obtained from the whole range of Ic,

small and large, whereas the negative residuals are obtained

with a preference from larger Ic values. Fig. 3(c) shows that all

observed intensities contribute now to the negative residuals,

which are to be found in the left part of the plot, whereas the

positive residuals, which are found in the right part, still have a

preference for larger observed intensities: the largest decile of

residuals receives no contribution from the weakest decile of

observed intensities.

When the same model is refined with a significance cutoff

Io > 3�, which reduces the number of reflections used in the

refinement from 14 604 to 9217, the following results are

obtained.

The (�; s:u:) (Fig. 4a) and (�; Ic) (Fig. 4b) distributions again

show a zero conditional probability area for the lowest deciles,

similar to the application of an intensity cutoff Io > 0 in Fig. 3,

but in the latter case the x axis was met in the middle, whereas

now the area of zero point density extends to the far right. This

point where the area of plots meets the x axis depends on the

cutoff chosen: for Io > 0 it is always in the middle (because to

the left of this point are only negative residuals and to the

right of this point are only positive residuals) and for

increasing significance cutoffs this point shifts more and more

to the right (data not shown). The (�; Io) (Fig. 4c) distribution

appears to be uniform, in contrast to the case of an intensity

cutoff. The corresponding �2
S values are given in Table 1

(second last row). Despite the apparently uniform distribu-

tions in Figs. 4(c) and 4(d), the hypothesis of uniform distri-

butions must be rejected at the 0.001 level of significance.

To summarize the effects studied so far: when no cutoff is

applied, the resulting distributions ð�; s:u:Þ, ð�; IcÞ, ð�; sin �=�Þ
are uniform whereas the ð�; IoÞ distribution is not. It was

pointed out that this is expected, as for any value of Ic positive

and negative residuals may exist, whereas for the negative

values of Io only negative residuals exist; in this respect Io and

Ic behave differently due to the noise that is only part of Io, but

not of Ic. Application of an intensity cutoff leads to non-

uniform distributions for ð�; s:u:Þ and ð�; IcÞ; however, the �2
S

value for ð�; IoÞ is reduced and the value for ð�; sin �=�Þ
increases. Finally, application of a significance cutoff also leads

to non-uniformity of ð�; s:u:Þ and ð�; IcÞ distributions, whereas

the �2
S value for ð�; IoÞ is still more reduced. Put simply, the

ð�; IoÞ distribution appears to be even more uniform than in

the cases before.

The �2
S values are similar for ð�; s:u:Þ and ð�; IcÞ in each of

the cases presented in Table 1.

4.2. Application to modified artificial data

What happens when the realized random error in the data is

not adequately described by the s.u. values? What happens

when other systematic errors are present? Questions of this

type can be studied with artificial data that were further

modified.

4.2.1. Large standard uncertainty values too small. As an

example, we take the case in which the s.u. values of the strong

intensities are underestimated. For this purpose the s.u. values

of data set 24 are changed according to the transformation

�!
�

0:5 � þ 1
; ð5Þ

which leaves very small s.u.’s unchanged and damps larger

s.u. values down quickly. The Io values of data set 24 and the

modified s.u. values are combined to data set 30. This data set

was used for a refinement with application of a significance

cutoff Io > 3�ðIoÞ. The resulting plots are depicted in Fig. 5.

The transformation [equation (5)] has a strong influence as

can be seen from the additional structures in the plots in Fig. 5.

The �2
S values are 2321.80 (a), 2450.17 (b), 1383.09 (c) and

763.59 (d).

An interesting side effect of the transformation [equation

(5)] is that the predicted and factual R values both decrease.

In this example, the de facto wRjw¼1=�2 decreases from

approximately 3.6% for the true s.u.’s (set No. 24) to

approximately 1% for the modified s.u.’s [and still to 2.1% for

choosing a factor of 0.01 instead of 0.5 in the denominator of

equation (5)]. The flexibility of the model serves now to

describe those reflections with too small s.u.’s. The reduction

of R values is, however, accompanied by an increase in the

goodness of fit, GoF = 3.0, which indicates that (some of) the

s.u.’s are too small, and by a distinct increase in Rmeta from

0.5% (set No. 24) to 67.3% (set No. 30). Multiplication of all

s.u. values with a factor of approximately 31=2 would increase

the predicted R value to the level of the de facto R value

whereas the de facto R value itself would remain unchanged as
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the refinement was performed with weights w ¼ 1=�2 and the

corresponding wRjw¼1=�2 factor does not change under such a

transformation (Henn & Schönleber, 2013). As a result one

would obtain Rmeta ’ 0. This transformation would also lead

to a reduced significance of the data and the s.u.’s of the model

parameter would increase. The important point, however, is

that this multiplication of s.u. values would not change the �2
S

values and the plots in Figs. 5(a)–5(d), as these are based on

ranking numbers of the analyzed entities and the ranking does

not change either under a positive multiplicative transforma-

tion. Also, the scaling of s.u. values would not turn a non-

Gaussian distribution of residuals (see supporting informa-

tion, Fig. 2, last row) into a Gaussian distribution of residuals.

It is concluded that the systematic error induced by

underestimating the strong s.u. values is severe and is seen in

the �2
S values, residual distribution, Rmeta and BayCoN plots.
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BayCoN plots for the artificial data set No. 24 with application of a significance cutoff Io > 3�: residuals (a) versus standard uncertainties, (b) versus
calculated intensities, (c) versus observed intensities and (d) versus resolution.



These changes also appear for a more moderate transforma-

tion of � values, e.g. when a factor of only 0.01 instead of 0.5 is

chosen in the denominator of equation (5) (data not shown).

However, for illustration purposes the factor 0.5 was chosen.

Plots similar to those in Fig. 5 are seen in the application to

experimental data, for example for data sets Nos. 3 and 7 that

also show the characteristic increase of density of points in the

upper corners for the ð�; IoÞ, ð�; IcÞ and ð�; s:u:Þ plots and in the

lower corners for the ð�; sin �=�Þ plot. Also data set No. 9

shows similar features.

Fig. 5(b) should be compared to the ð�; IcÞ plots in Fig. 2(b),

Fig. 3(b) and Fig. 4(b). The last plot already explains the zero

point density area in the bottom of Fig. 5(b). There are two

areas of higher density of points in the upper left and upper

right corner, and in the horizontal stripe connecting these

corners the density of points is reduced. This horizontal stripe
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Figure 5
BayCoN plots for the artificial data set No. 30 with s.u. values transformed according to equation (5), which leads to an underestimation of large
s.u. values: residuals (a) versus standard uncertainties, (b) versus calculated intensities, (c) versus observed intensities and (d) versus resolution.



at the top of the plot corresponds to the largest (e.g. decile of)

Ic values. These contribute more strongly to the weakest (most

negative, in the left part of the plot) and strongest (most

positive, in the right part of the plot) residuals. In other words,

the extreme positive and negative residuals are caused more

frequently by the strongest Ic. This is because the largest

absolute differences ðIo � IcÞ are still found for the largest

values of Ic (and of Io), whereas the corresponding � values

are damped down to lower values [equation (5)] so that the

absolute values of residuals ðIo � IcÞ=�ðIoÞ now tend to

become larger for strong intensities. These areas of high

density in the top corners are also seen in Figs. 5(a), 5(c), to

which a similar interpretation applies. In Fig. 5(d) the areas of

increased density of points appear in the bottom corners. A

horizontal stripe in the bottom corresponds to the lowest

resolution shell, in which the strongest intensities are to be

found. The strongest reflections prefer the extreme residuals

as just discussed; this carries over to the resolution by finding

the extreme residuals in the lowest resolution shell.

The presence of a systematic error in the s.u.’s increases all

�2
S values substantially, as can be seen from comparison of

Tables 1 and 2. This is not surprising as it has already been

seen that the respective conditional probability plots show

patterns and are not uniform. A side observation is that in this

example of a systematic error the �2
S ð�; s:u:Þ and ð�; IcÞ values

are similar in the case of no cutoff and for a significance cutoff

Io > 3�ðIoÞ, and in both cases the values are different from the

respective �2
S ð�; IoÞ value. But in the case Io > 0 all three

values are similar with �2
S ð�; IcÞ now being closer to �2

S ð�; IoÞ

rather than to �2
S ð�; s:u:Þ. A similar tendency will appear in the

analysis of published experimental data.

4.2.2. Large standard uncertainty values too large. In the

following, the case is investigated in which the strong s.u.’s are

overestimated rather than underestimated. For this a trans-

formation

�! 2� �
�

0:5 � þ 1
ð6Þ

was applied to the � values of data set 24, resulting in data set

31. This led to an increase of the large s.u.’s equal to the

decrease in equation (5). The ratio of de facto (Rde facto ¼

0:0412) and predicted (Rpred ¼ 0:0605) R values was at 0.68

identical to the GoF. The corresponding negative value

Rmeta ¼ �0:46 also indicates overfitting like the GoF (Henn &

Schönleber, 2013). But now it has become apparent from the

�2
S values that overfitting took place in response to too large

s.u. values: the �2
Sð�; s:u:Þ ¼ 240:25 and �2

Sð�; IcÞ ¼ 236:40 are

one order of magnitude smaller, whereas �2
Sð�; IoÞ ¼ 2925:31

has more than doubled and �2
Sð�; sin �=�Þ ¼ 129:09 is now

even within acceptance of the hypothesis of uniformity at the

0.001 level of significance (Fig. 6).

In this case, an a posteriori transformation of s.u. values is

also feasible; however, this is not the most important point

here. From the comparison of the last two examples it is

concluded that overestimation of strong s.u. values is less

harmful with respect to the statistical independence of resi-

duals than underestimation of s.u. values. However, the mean

significance of the data will decrease and the s.u.’s of the model

parameters will appear to be larger.

4.3. Application to experimental data

For an overview, all 23 experimental data sets and addi-

tionally the six artificial data sets 24–29 were analyzed by

application of the test on uniformity with the �2
S values. Fig. 7

shows the corresponding �2
S values and the threshold value

149 as a blue line. As the �2
S values differ over a large range, a

logarithmic scale was chosen.

General observations are that:

(a) Most of the experimental �2
S values are larger than the

threshold value.

(b) In the case of experimental data, the �2
S values tend to

be similar on a logarithmic scale for ð�; IoÞ and ð�; IcÞ, when no

weighting scheme is applied (set Nos. 3–7, 14–16, 20).

(c) In the case of experimental data, the �2
S values tend to be

smaller for ð�; s:u:Þ compared to ð�; IcÞ and ð�; IoÞ with

exceptions for ð�; IoÞ (sets 2, 12, 13, 21, 23).

(d) In the case of artificial data with cutoff Io > 0 (Nos. 25,

27, 29) the �2
S values tend to be similar on a logarithmic scale

for ð�; IcÞ, ð�; IoÞ and ð�; s:u:Þ and far above the threshold

value.

(e) In the case of artificial data with no cutoff (24, 26, 28),

the �2
S values tend to be similar on a logarithmic scale and

below the threshold value for ð�; IcÞ and ð�; s:u:Þ and much

lower than the corresponding values of ð�; IoÞ. The comparison

with the previous finding demonstrates the effect of an

intensity cutoff.
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Table 2
Data set with systematic error (large s.u.’s too small): effects of the
application of intensity and significance cutoffs to the uniformity of
conditional probability distributions shared by the residuals and standard
uncertainties, calculated intensities, observed intensities and resolution.

The uniformity of the distribution is checked by a �2 test. The threshold value
is approximately 149, so that for �2

S values larger than 149 the hypothesis of a
uniform distribution must be rejected.

Cutoff �2
S ð�; s:u:Þ �2

S ð�; IcÞ �2
S ð�; IoÞ �2

S ð�; sin �=�Þ Fig.

None 1392.64 1390.63 3954.97 756.89
Io > 0 2022.39 2250.54 2320.59 897.92
Io > 3�ðIoÞ 2321.80 2450.17 1383.09 763.59 5

Table 1
Data set with no systematic error: effects of the application of intensity
and significance cutoffs on the uniformity of conditional probability
distributions shared by the residuals and standard uncertainties,
calculated intensities, observed intensities and resolution.

The uniformity of the distribution is tested by a �2 test against uniformity. The
threshold value is approximately 149, so that for �2

S values larger than 149 the
hypothesis of a uniform distribution must be rejected.

Cutoff �2
S ð�; s:u:Þ �2

S ð�; IcÞ �2
S ð�; IoÞ �2

S ð�; sin �=�Þ Fig.

None 116.04 118.49 2705.82 66.95 2
Io > 0 827.35 928.46 955.16 135.25 3
Io > 3�ðIoÞ 883.74 883.37 160.01 149.14 4



(f) In the case of artificial data with no systematic error the

�2
S values for ð�; s:u:Þ and ð�; IcÞ are always very close to each

other irrespective of intensity and significance cutoffs (data

with significance cutoff not shown). This is contrary to most of

the experimental data.

(g) �2
S values below the threshold value appear simulta-

neously for ð�; IcÞ and ð�; s:u:Þ only for artificial data with no

cutoff (Nos. 24, 26, 28).

More individual observations are that:

(h) In the case of experimental data only the �2
S values of

sets Nos. 4 and 20 meet in the same place as was the case for

the artificial data with applied cutoff.

(i) The �2
S value for ð�; IoÞ of sets 2, 12, 13, 21 and 23 is lower

than the corresponding �2
S value for ð�; s:u:Þ.
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Figure 6
BayCoN plots for the artificial data set No. 31 with s.u. values transformed according to equation (6) in which large s.u. values are overestimated:
residuals (a) versus standard uncertainties, (b) versus calculated intensities, (c) versus observed intensities and (d) versus resolution.



(j) In the case of experimental data sets 8–11 they achieve a

�2
S value for ð�; s:u:Þ smaller than the threshold value and sets

12 and 13 for ð�; IoÞ.

Not all of these observations can be addressed or explained

in the publication at hand. However, it is demonstrated how

application of an intensity cutoff increases the corresponding

�2
S values of ð�; IcÞ and ð�; s:u:Þ, leading to non-uniform

distributions, whereas the �2
S value of ð�; IoÞ is decreased. In

the following some experimental findings are discussed in

more detail and corresponding BayCoN plots of the data sets

with highest and lowest �2
S values are shown.

4.4. Residuals and weighted standard uncertainties

The BayCoN plot of residuals ðIo � IcÞ=�̂�ðIoÞ versus �̂�
should be uniform, as deviations from uniformity indicate

preference (increasing density of points) or avoidance (low

and zero density of points) of certain combinations of residual

and �̂� values. Statistical independence implies that all

combinations are realized with the same frequency, apart from

statistical fluctuations. The lowest experimental �2 sums for

ð�; �̂�Þ are obtained for data sets Nos. 9 (�2
S ¼ 129:68, Rmeta =

9.9%, see Fig. 8a) and 11 (�2
S ¼ 132:79, Rmeta = 13.1%, see

Fig. 8b), which correspond to the harmonic nuclear motion

multipole model refinements at 20 K and at 120 K.

The largest �2 sums are obtained for data sets Nos. 1

(�2
S ¼ 2272:82, see Fig. 8c) and 20 (�2

S ¼ 2180:90, see Fig. 8d).

A large coumarin crystal of size 0.33 � 0.65 � 0.91 mm was

used in data set 1 together with a beam collimated to 0.6 mm,

and data were collected from three different detector posi-

tions. Different detector positions were also used in data sets

11 and 9; therefore the high degree of non-uniformity of

residuals may be connected to data-processing errors and/or

to an incomplete correction of effects of the large crystal size.

Data set 1 has the largest value of Rmeta = 80.5%, which is

artificially high due to a weighting scheme w ¼ 7=½�2ðFoÞ�

which corresponds to �̂�2ðFoÞ ¼ ð1=7Þ�2ðFoÞ, i.e. the experi-

mental � values that are known to be too small in most cases

are further diminished. When the original experimental s.u.

values are used instead, this reduces the systematic error to

Rmeta = 49.7%. Data set 20 has Rmeta = 58.0%

4.5. Residuals and calculated intensities

These distributions should be uniform as was shown in x4.1.

The lowest experimental ð�; IcÞ �
2
S values are obtained for data

sets Nos. 12 (�2
S ¼ 205:69, Rmeta = 16.3%, see Fig. 9a) and 13

(�2
S ¼ 243:59, Rmeta = 5.4%, see Fig. 9b), which correspond to

anharmonic and harmonic nuclear motion multipole refine-

ment of the same experimental data.

Data sets 12 and 13 do not show any notable differences,

although differences might be expected as sets 12 and 13

correspond to anharmonic and harmonic nuclear motion

refinement of the same experimental data. It is also surprising

that the harmonic nuclear motion multipole model has the

lower Rmeta = 5.4% (set No. 13), thus indicating less systematic

errors compared to set 12 (with Rmeta = 16.3%) which included

anharmonic nuclear motion modeling, despite a quite large

difference in the final wRðF2Þj1=�̂�2 values that were 1.47%

(data set 12) and 3.91% (data set 13). An explanation of this

unexpected behavior may be that different parameters for the

weighting schemes were used (data set 12 a ¼ 0:005, b ¼

0:006; data set 13 a ¼ 0:015, b ¼ 0:056). If the weighting

scheme is only used to correct the s.u. values from the

reflection file, both anharmonic and harmonic refinements will

be performed with the same weighting scheme. Exploring

these interesting details goes beyond the scope of the present

work. Both data sets still belong to those with a low degree

of contamination with systematic errors. Data sets 14–16 are

from the same publication. Set 14 is a conventional IAM

refinement against charge-density data; therefore systematic

errors (Rmeta = 50.0%) and non-uniform BayCoN plots

are expected. Employing a multipole model reduces the

systematic errors to Rmeta = 26.7% (data set 15) and to Rmeta =

25.4% (data set 16) and results in smoother BayCoN plots.

From these numbers and the corresponding plots (see

supporting information), however, it is still obvious that

further systematic errors are present.

4.6. Residuals and resolution

The lowest values �2
S for the conditional probability distri-

bution ð�; sin �=�Þ are obtained for data sets 12 (�2
S ¼ 144:35),

9 (�2
S ¼ 155:65), 8 (�2

S ¼ 170:39) and 11 (�2
S ¼ 181:77). The

largest values are obtained for data sets 3 (�2
S ¼ 10 673:50)

and 20 (�2
S ¼ 3283:80).

Data set No. 3 corresponds to a charge-density study of

roxythromycin, a large organic molecule, that additionally

showed disorder, measured with synchrotron radiation

(0.56000 Å) at 100 K. Statistical weights were used. The plot

Fig. 10(c) shows different features in the low- and high-

resolution parts. The low-resolution part (deciles 1–3) consists

of two horizontally organized stripe-like structures, which end

close to the third decile as indicated by a small sharp increase

of the initially linearly increasing white gap to the right

vertical axis. This may mark the end of the overlap region
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Figure 7
Logarithm of �2

S values of the experimental data sets 1–23 and artificial
data sets 24–29 for residuals � versus s.u. (red circles), residuals versus Ic

(blue squares) and residuals versus Io (green diamonds connected by a
dashed line). The threshold value of 149 is shown as a blue line.



between the two detector positions at 2� = 0� and 2� = �40�.

This low-resolution part can be further divided into the lowest

resolution decile, that clearly shows a symmetric polarization

towards the extremes of residuals. Too small s.u. values for the

strong intensities of the lowest resolution shell lead to such a

polarization of residuals as can be seen from Fig. 5. In the

horizontal stripe corresponding to the second and third

resolution deciles, however, positive residuals appear much

more frequently than negative ones. There is an additional

shift of residuals to negative values for increasing resolution

for the last seven deciles in resolution shells, i.e. Io tends to

be increasingly systematically smaller than Ic for the high-

resolution batch. This slow shift compensates for the distinct

tendency of large positive residuals in the second and third

deciles. It remains unclear whether data-processing errors, e.g.

in scaling, merging and assigning s.u. values of low- and high-
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Figure 8
ð�; �̂�Þ plots for data sets with lowest values of �2

S, No. 9 (a) and No. 11 (b), and for highest �2
S values, No. 1 (c) and No. 20 (d).



resolution batches, or model errors such as disorder are

responsible for these shifts. The ð�; sin �=�Þ plot for data set 20

is similar to that of data set 3 in the respect that there seems to

be a symmetric low-resolution stripe at the first decile with a

high frequency of extreme positive and negative residuals, a

stripe around the second decile with a higher frequency of

only one extreme of residuals, in this case negative ones, and a

large upper part, again with a slow tendency to produce

shifted residuals. In this case the residuals from the highest

resolution shell tend to be shifted towards positive values.

This implies that the Io values tend to be larger than Ic

for the highest resolution shell, whereas at lower resolution

they tend to be smaller, and in the lowest resolution shell

they tend to be frequently smaller and larger but not alike.

Also in this study statistical weights were used. It is

interesting to see that those five data sets with the largest
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Figure 9
ð�; IcÞ plots for data sets Nos. 12 (a) and 13 (b), Nos. 14 (c) and 1 (d).



systematic errors (data set/Rmeta: 1/80.5%; 3/71.0%; 20/57.9%;

17/57.58%; 14/59.9%) all use statistical weights (or weights

in direct proportion to statistical weights) with the exception

of data set 17, in which an IAM was refined against high-

resolution data. These sets also showed highly non-uniform

distributions of residuals versus resolution, when the corre-

sponding information was available.

5. Summary

The meta residual value was calculated with respect to

reduced residuals �̂� for 23 experimental data sets, not all of

which employed a weighting scheme. The data sets with lowest

meta residual value range between 5 and 10%, but most show

a much higher value. The concept of conditional probabilities

was used to construct scatter plots, which demonstrate

nonlinear connections between the residuals and observed
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Figure 10
ð�; sin �=�Þ plots for data sets Nos. 12 (a) and 9 (b) as well as 3 (c) and 20 (d).



and calculated intensities as well as s.u.’s and resolution. It was

stressed that uniform plots are expected for ð�; IcÞ, ð�; s:u:Þ and

ð�; sin �=�Þ plots when the data are free of systematic errors. It

was shown how intensity and significance cutoffs introduce

systematic errors in terms of deviation from uniformity of the

respective distributions. Application of an intensity cutoff

Io > 0 leads to overfitting. The deviations are visualized by the

scatter plots and quantified by the �2
S values. The cases of too

small and too large s.u. values were studied with the help of

artificial data, showing that too small s.u. values affect the

distribution of residuals more strongly. Applications to

experimental data showed that low meta residual values are

accompanied by uniform scatter plots. Distinct dependencies

of the residuals from the resolution were observed. It was

suggested that these are not only caused by model deficiencies,

but also by data-processing steps. The main purpose of this

work is to develop concepts for the proof of existence of

systematic errors, not to identify these. The important and

helpful existing tools, like the normal probability plots, are

unfortunately only rarely used. We hope that the visualization

of systematic errors in the form of scatter plots helps to

quickly identify and eliminate many sources of errors that

otherwise might pass unnoticed and that this will help to focus

research activities and attention on this important topic. The

software package BayCoN, which is capable of calculating the

conditional probability distributions, �2
S values and theoretical

R values from ‘xd.fco’ or from ‘fcf’ files, is available from the

authors.
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